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CALCULATION OF THE ADJOINT MASSES FOR AN ANNULAR BLADE ASSEMBLY 

L. A. Tkacheva UDC 535.5:621.22 

It is necessary to know the adjoint-mass coefficients in order to solve various problems 
in turbine aeroelasticity such as the calculation of the natural frequencies and forms of 
blade vibrations. These coefficients are known only for the planar set of plates [1-3], so 
interest attaches to estimating the effects Of the three-dimensional flow on their magnitudes~ 

Here we consider the adjoint masses ~or a three-dimensional ring set of thin blades 
performing small harmonic oscillations with a constant phase shift in an incompressible 
fluid. 

We use a cylindrical coordinate system r,8 , z for the ring set of N blades vibrating 
in a liquid between two unbounded cylinders Cl and Ca with radii rl and ra (Fig. i). We 
assume that: i) The liquid is ideal and incompressible and is at rest at infinity, while 
the flow is potential; 2) the blades are infinitely thin and represent screw surfaces de- 
fined by the equations 

z = h(O - -  2 ~ n / N ) ,  - -  Oo < 0 - -  2 ~ n / N  < 0o, r l  < r < r~, 

n = O, 1 , . . . ,  N - - t ,  

where h the pitch of the screw surface and 2~o the blade setting angle; 3) all the blades 
perform small oscillations with the same harmonic law but a certain phase shift ~=2~n/N, 
n = O , ~  i , . . . ,  N - - t .  

We transfer to dimensionless coordinates r' O' z' referred to the characteristic % , , 

length L = r2 --~,: r' = r/L, z' = z/L, 

�9 0'  = 0, h'  = h /L .  
In what follows, the primes are omitted. By virtue of the third assumption, the vibration 
law can be put as 

w(h)(r, O, t) = L / ( r ,  ~) exp [ i ~  -4- ~t)1, 

where w (k) are the displacements of the points on blade k along the normal, ~ is the circular 
frequency, and f(r, 8) is the dimensionless complex function that defines the form of the 
vibrations. We rerresent the velocity potential �9 in the form 

= i L ' ~ ( r ,  e ,  z ) e x p ( i e t ) .  

Here ~(r, 8, z) is a dimensionless complex function that satisfies the Laplace equation 

A r  = o (1)  

and the following boundary conditions: 

]ira I V r  = o; (2)  
I : 1 ~  

~ I o--~sh= ] ( r ,O)e ih~ ,  k =  0,1 . . . .  , N t; (3) 
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Fig. i 

! 

I =~ j=1,2; (4) 
~ n  c j  

r = 0, (5) 

where n is the normal to the corresponding surfaces, S k is the surface of blade k, and F 
is the velocity circulation around a blade. By virtue of (3), the function ~ has the prop- 
erty of generalized periodicity: 

q)(r, e + 2nn/N, z) = e~-~r 8, z), n = 0, i ..... N -- i. (6) 

The blades are represented as vortex surfaces of intensity 7, while the cylinders Cj are 
represented as slmple-layer potentials with intensities "~4, J = I, 2. The vector 7 has com- 
ponents Yr and 7T, where v is the tangent to the screw li~e, and it is related to the veloc- 
ity discontinued by 

= n • (,+-,-), 

where the superscripts + and - denote the limiting values of the function on approach from 
above and below correspondlngly. The components of 7 satisfy the following [4]: 

a(,~, VW/i')/ar + ~,/ae = 0. (7) 

We assume that the radial component of the velocity does not have a discontinuity at 
the blade edges while the tangential component has an integrable singularity of order i/2. 
Then the functions 7r a n d  7T can be put as 

~,(~, e) = ~(~, o ) 1 1 / ~ ,  ~,(~, e)= ~,(~, e) I / e ~ -  e,. {8} 
From the conditions for low flow at the cylinders we have 

~,(rj ,  e) = o, j = i , 2 .  ( 9 )  

From the conditions for low flow at the blades we get the following system of three integral 
equations, of which the first is singular and the other two have weaker singularity: 

< J /  ' o " o , w  - 

(pr  -5 h' cos =,,) (p - -  r cos =n) - -  h~r sin" =n "{- h'~P (%b - -  8) sin ='~I 
- -  V, [p '  - -  ~or cos =n  + P + I J  (~ - -  e)'-'] ' " '  , dpd~; 4- 

'2. t f~. l~c! g,[r(~--hO)--hrjsin(1P--8)]r$ d~d1# 
nt" 4.~ ] / f ~  '=  . [ r~  - -  2 r j r  cos (~; - -  e) -~- r z Jr-(~ - -  he)" ]  3/s ; 

(, (' ~lr~os(~--O)--r~lr~d,d~ .g(-- 

k---L2. 

Here a,=~--O+2=n/N, n = O, I ..... N -- I. 

We examine the asymptotes of the integrals in (ii) for large z. We expand the inte- 
grand functions as series in negative powers of z and use the fact that for D = 2m~/N 
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N-I N - - 1  

~.~ e in~ cos ~n con = 0 ~nd ~ ei~ sin ~n cosm-t~ = 0, 
Irt-~.O 'fl'~O 

which gives us that the first integral in (ii) I~ is of order I i -----O(z-~) 
where 

for Izl ~ ~o, 

[2N,  ~ = 0, {12) 
= / ~ v / = ,  o <  s<~=, 

[ N ( 2  - -  F/a) ,  z r  ~ <  2=. 

Then one can see that z j has the same order at infinity: 

xj =O(z -~) for Iz]-~co, ]=i, 2. (13) 

This means that the condition for the velocities to die away at infinity is met. 

We put f(r, 0) in the form 

l(r, 07 = h(r ,  0 ) +  l,(r, 0), 

where the functions ft and f= satisfy the conditions 

h(r, --0) = f~(r, 0), f,(r, --0) = .f,(r, e'). (14) 

This representation enables one to solve the problems for ft and f= independently. Note 
that the function if= satisfies the first equation in (14). Therefore, it is sufficient to 
consider the problem for f = ft. In that case, the solution satisfies the conditions 

~,(r, --0) = --?,(r, 0), v,(r, --0) = ?,(r, 0), xs(--0, --z) ------xs(0, z), ] - - i , 2 .  (15) 
Conditions (14) and (15) allow one to solve the problem only for z > 0, which considerably 
reduces the volume of computation. 

Therefore, we have the system of equations (7), (i0), and (ii) with the conditions (5) 
and (13) to determine the unknown functions Yr, YT' ~i, and ~, The pressure difference Ap 
across a blade can be represented in the linear approximation by means of a Cauchy-Lagrange 
integral in the form 

0 

Ap (r, O, t) - -  ipo)Le i=t ~ ?r ~ / : ~  dO, (16) 
, -u  

o 

where P is the density of the liquid. 

In accordance with (6)-(9) we seek an approximate solution in the form 
N x 

?, Pfr-~ = icoL ~ gm (r) recos ms/sin r (17) 
m==l 

]V x 

W = icoL8o ~.~ g~(r)  s inma;  {18) 
~'n=l  

N 3 

xk = icoL ~. h~ h) (z) ei(q ~'4 n)o, k = t ,  2, (19)  
q=o 

where gm(r), h~k)(z) are dimensionless complex functions, g'm(r) is the derivative of gm, 
n = ~tN/2~ ; N, and Ns are integers, and c is a new variable, which is related to 0 by 

e -- 80 cos a. (20) 

We approximate the functions gm(r) as follows. The interval [r,, r=] is split up into 
N= equal parts, and in each part [rk_, , r k] we represent the function gm(r) as a quadratic 
polynominal with complex coefficients: 

t ak,, (r - -  rh-x) s + bk,~ (r --  rk-1) q- chm, rk-x < r < rh. (21)  g~ (r) = 

We specify smoothness in the functions gm(r), g'~(r) and obedience to (9), which allows us to 
eliminate 2N,N= coefficients akm, bkm. 

Then NzN= coefficients remain unknown. The functions h(qh)(z) are expanded in negative 
powers of z for [z] >H, where H is a sufficiently large number, or for ]z] < H they are rep- 
resented as linear combinations of Chebyshev polynomials T,: 
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i 
z-v ~ .  At~)'-tet �9 , z > It ,  

N 4 

= I,l<S', 
s 

,-v ~0 C~)z-/, z<--~, 

where v i s  de f ined  by (12) and'a~ >, B~ ), C~ ) are  complex c o e f f i c i e n t s .  

We s p e c i f y  smoothness in  the  f u n c t i o n s  h~)(~ up to the  second d e r i v a t i v e s ,  and then 
the  c o e f f i c i e n t s  A~ ) and ~ )  can be expressed  in  terms of  B ~  ) ; a s  a r e s u l t  we g e t  2 ( N s  + 
1) (N, + 1) unknown complex c o e f f i c i e n t s .  The s o l u t i o n  o f  the form of  (17)- (19)  s a t i s f i e s  
the  cond i t i ons  f o r  the  absence o f  c i r c u l a t i o n  in  the  f low and fo r  decay a t  i n f i n i t y .  We 
provide  obedience  to the  no-f low c o n d i t i o n s  a t  the  check p o i n t s  on the  b lades  

and on the cylinders 

r~, = (rh-, -4- ra)/2, ct~ = (21 -- t) ~t/2N,, 
k -- t, 2, . . . ,  N2, ] = i, 2, . . . .  , [ ( N t +  t)/2| 

(2l + l) �9 . . . .  z~ = H cos (n~/N,) ,  

I = 0, i , . . . ,  N, ,  q = 0, i , . . . ,  [N,/2] ,  

to get a system of linear algebraic equations for the unknown coefficients. 

This algorithm was realized numerically with a BESM-6 computer. The main dlfficulty 
in calculating the matrix lies in calculating the double singular integrals. It can be 
shown that if the point ~*, 8', z*) does not lie on the boundary of a blade, these singular 
integrals as taken over the band He = {~, 8):I0--8"I<e} tend to zero for r § 0. Consequently, 
the double singular integral over a blade can be reduced to a repeated one. Here the inte- 
gration with respect to 0 can be performed analytically by virtue of the representation of 
(21). As a result, the double slngular Integral in (10) reduces to the one-dlmenslonal in- 
tegral of the form 

n 

f/cl (r*) .1 t ~ "  6 + Cs (r*) In I ~ -- 0 [ + K (4 -- 0)} cos roads, 
o 

where CI~* ), C2(r*) are the coefficients for the singularities and K(r -- 8) is a regular func- 
tion. The singular integrals in this expression are calculated analytically. As regards 
the regular integrals of the oscillatlng functions, these may be calculated by means of 
Filon's formulas [5]. 

From (16) and (17) we get for the pressure difference across the blade 

N I 

Ap = pm~L=e ~t ~] gr~ (r) sin mo. (22) 
m = l  

Therefore, the functions gm(r) define the load distribution. 

Let the blade vibration law take the  form 

w (r, 6, t) = L ~ qh (t) ]~ (r, e), 
k = l  

where q~(t) are dimensionless generalized coordinates and /~, O) are the forms of oscilla- 
tion, while No is the number of generalized coordinates. 

The generalized hydrodynamic forces acting on a blade are calculated from 

Qk ( t )=  ! /  Ap (r, (}, t)1~ (r, e)ds. (23) 

6 6 0  
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ga (r) --0,04 

1,25 

2,01 
0,t3 

--0,03 

1,5 

2,10 
0,i4 
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We substitute (22) into (23) for the pressure difference to get 

N o 

Q4 (t) ---- pL'O~ ~ Mh}qj (t), 
5=1 

where Mkj are the adjoint-mass coefficients, which in general are complex, but are real 
for ~ ffi D, ~. 

We represent the adJolnt masses in the form 

Mkj -- rnn~ (r) dr. 
r I 

Here mkj(r) are the lengthwise adJoint masses in the section r = const, 

0 0 

mh~ (r) = ] / r ~  J" Ap C r, 8, t) 1, C r, o) dO. 
~ e  O 

(24) 

We examine the adjoint masses for the following forms of vibration: 

Ih(r, O)=(r--r , )qcosl~,  k = t ,  2, . . . .  9, q, I = 0 ,  l ,  2, 

where k = 3q + l + 1, w h i l e  0 and ~ a r e  r e l a t e d  by (20) .  We s u b s t i t u t e  (22) f o r  the  p r e s -  
s u r e  difference into (24)to get 

r mkj (r) = ~ ,~l (r) ][r ~ + k" (r -- r,) q, (25) 

where 1 = [M3], q=k-- 1 - - 3 l ,  

[2g  j' (,),  z = o, 
a J' CO = ] g ?  ( ,) ,  I = i ,  

I . O ) / r  ~ .0) ,s~ ~,--~1 (r), l = 2 .  

Here g~J)(r) are the pressure amplitude functions calculated for the vibration forms fj. 

As examples we considered two sets of blades with large and small elongations. The 
first set has the following parameters: rt = I, r z = 2, 8 o --= 0,7. N ---- 6 , and in that case the 
elongation ~ = 0.39, while the spacing and the angle of entry into the average section were 

correspondingly T = |.6, ~ ----- --58 ~ 
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I t  was found t h a t  the  f u n c t i o n s  gm f o r  the  b l ades  wi th  small  e l o n g a t i o n  were almost  
independent  o f  r a d i u s ,  i . e . ,  the  p r e s s u r e  on the, b l ade  tends  to e q u a l i z e  in s c a l e .  Table 
1 g iSes  the  v a l u e s  of  the  gm(r) fo r  the  v i b r a t i o n  form ~4 = r - - r 1  and the  phase s h i f t  ~ = 
2~/3, 

The adJolnt masses can be calculated in that case By means of the theory of planar sets 
in the average section ~ = (rl -~ ~)/2 and for the vibrational law averaged with respect to 
radius: 

r 2 

" j'f (r, O) dr, /o(O)= ~, ~1 
r 1 

and then they may be calculated in each section by means of (25). The same derivation was 
given for a straight set of plates in the case of small elongations and small Struhal num- 
bers [6]. 

As an illustration, the solid lines in Fig. 2 give the values for the three adJolnt- 
mass coefficients m11, m~, mT1 as functions of radius, together with the corresponding 
values calculated in the hypothes~s of cyllndrlcal sections (broken llne) and from the 
averaged vibration law (dot-dash llne). The three curves agree well for m~ with the form 
of oscillation independent of the radius. In the cases of m4~ and mT~, the forms of the 
vibration are llnearly and quadratically dependent on the radius correspondingly. In that 
case, the cyllndrlcal-sectlon hypothesis gives a large deviation. A similar picture is ob- 
served for the upper adJoint-mass coefficients. 

In the second case, the parameters were rl = 0.4, r= = 1.4, 8o - 0.74, h = 0.9, N = 30 
and A = 5.4 with the corresponding values in the average section T = i, B = 45 ~ �9 In that 
case, the cylindrical-section hypothesis gives a better approximation to the results from 
the three-dimenslonal theory. Figure 3 shows the dependence of m~ ~, m4~, mT~ on radius for 

= 2=/15. 

The convergence of the method was determined by numerical experiment by comparing the 
results with increasing values of H and N~(~ = i, . .., 4); it was found that for blades with 
small elongation, the results were almost independent of H. Even for N~ = N= = 4, N3 = N~ 
= 3, any further change in Nl (~ = I, ...,4) altered the results only in the third figure. 

For the blades with large elongation, the pressure varies substantially over =hem; 
therefore the convergence is somewhat worse. In that case, the number N= of divisions along 
the radius should be increased to provide sufficient accuracy. For example, for the case 
with ~ = 5 and T = 1 with NI = 4, Na = 6, Ns = N4 = 3 any further increase in Nt(~ =i,..., 4) 
alters the results only in the third place. 

In conclusion we note that the cyllndrical-sectlon hypothesis gives good results in 
calculating the adJoint masses for blades of large elongation, and it is also appllcable 
to ones with small elongation if the form of the vibration is independent of the radius, 
and also that in the general case for blades with small elongatlon it is reconw~ended to use 
the average-section method, which agrees well with the three-dimensional theory. 
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